
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 154
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

BIGDATA PROCESSING: AN INTEGRATIVE MODELING

 Mr.C.C.Kalyan Srinivas Mr.C.Govardhan
 Asst.professor, KMMITS Asst.professor, KMMITS
 kalyan.chenta@gmail.com gvardhanc@gmail.com

Abstract: More than 2.5 extra bytes of data are created everyday based on the user information
automatically generated over Internet. Social networks, mobile devices, emails, blogs, videos, banking
transactions and other consumer interaction, are now driving the successful marketing campaigns, by
establishing a new digital channel between the brands and their audiences. Powerful tools are needed to store
and explore this daily expending Big Data, in order to submit an easy and reliable processing of user
information. Expected quick and high quality results are as much important as priceless investments for
marketers and industrials. Traditional modeling tools face their limits in this challenge, as the information
keeps growing in volume and variety, thing that can be handled only by non-relational data modeling
techniques.

Keywords: NoSQL Data Modeling; BigData Processing; BigTable Database; Non-relational Database.

1. Introduction
Data engines based on SQL (Structured Query
Language) first created in the 1970’s,show a high
performance indicator when processing small
relational data, but are very limited in face of data
expansion in volume and variety. MPP (Massively
Parallel Computing) first created in the early 1980’s,
has slowly improved the performance indicator for
complex volumes of data. Still, it could not be used
to process BigData in a daily expansion. Hadoop
MapReduce (explained in this section) is considered
as the most recently efficient processing technique as
it is most performant when dealing with complex
high volumes of data. In section 2, 3 and 4 we show a
preview of the existing non-relational data models
and the available related modeling techniques. The
section 5 details the main activity of distributed
systems, in terms of data consistency, data placement
and system coordination. The last part of the paper
(sections 6, 7 and 8) explains the purpose of this
study and the processing model we seek, after
presenting the analysis and the results of testing.
Finally, the conclusion is addressed in section 9.

1.1. MapReduce
In 2004, Google published a new paper introducing
the use of a simplified data computing technique,
showing high performance when processing complex
volumes of data. An easy-to-use model as
MapReduce does not require programming skills in
parallel and distributed systems. All the details of
parallelization, fault-tolerance, locality optimization
and load balancing [Perera (2013)] are embedded in a
plug-and-play framework.
1.2. Apache Hadoop

In 2009, an open source Java Framework was
created. This new Apache project was inspired from
Google’s published paper. The decentralized data
processing of Hadoop is optimized for large clusters
of machines. It is already used by enterprises like
Yahoo, Microsoft and Facebook, which implements
currently the largest Hadoop cluster since 2010. The
scalability of Hadoop allows improving the
computing performance without any deep
knowledge of the architecture. No need to improve
the hardware components of the servers anymore, but
instead, increasing the number of computing
machines will significantly improve the data
processing.
1.3. Non-relational databases
The highly expending information nowadays contains
complex and heterogeneous data types (text, images,
videos, GPS data, purchase transactions…) that
require a powerful data computing engine, able to
easily store and process such complex structures. The
3V’s of Gartner’s definition (volume, velocity,
variety) describing this expansion of data will then
lead to extract the unnamed forth V (value) from
BigData. RDMS (Relational Database Management
Systems) are unable to handle this task for several
reasons:
(1) The primary constraining factor is database
schema, because of the continuous changing structure
of schema-less BigData.
(2) The complexity and the size of data, overflows
the capacity of traditional RDMS to acquire, manage
and process data with reasonable costs (computing
time and performance).
(3) Relation-Entity modeling of BigData does not
easily adapt with fault-tolerant and distributed
systems.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 155
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

1.4. BigTable and HBase
 A Big Table is a sparse, distributed, persistent
multidimensional sorted map. The map is indexed by
a row key, column key, and a timestamp; each value
in the map is an uninterrupted array of bytes. Big
table used by many applications in Google, meets the
need for a highly scalable storage system for
structured data, as it provides random and realtime
data access. BigTable is not a relational database as it
structures data into records aggregated in indexed
huge files. Records are composed of columns, which
are grouped into column families. Records are
identified by row keys which are ordered
lexicographically. Column values have timestamps so
that old values are kept . Apache HBase created in
2008, is Hadoop's counterpart of Google's BigTable.
Sharing a close relationship with Hadoop is Apache
HBase which is currently used for Facebook’s
messaging application. Apache refers to HBase being
built on top of the Hadoop File System in the same
manner as Google BigTable is built on top of Google
File System (GFS). Like with many other Apache
projects, a robust community has grown around
HBase. The HBase distribution also includes
cryptographic software.

1.5. GFS and HDFS
GFS (Google File System) cluster consists of a
master node and a large number of chunk servers.
Each file is divided into fixed-size chunks (64 MB).
Each chunk is assigned a unique 64-bit label by the
master node at the time of creation. Chunks are
replicated several times throughout the network with
a minimum of three times The Master server only
stores the metadata associated with the chunks.
Metadata is kept current by receiving hear-beat
messages, update messages from each chunk server
HDFS (Hadoop Distributed File System) is a
counterpart of GFS. Itis designed to be a scalable,
fault-tolerant, distributed storage system that works
closely with MapReduce. It provides very high
aggregate bandwidth across the cluster. As for GFS,
HDFS cluster is comprised of a name node and large
number of data nodes. HDFS file structure is divided
into 128 MB blocks.

2. Non-relational data models
Relational and non-relational data models are
different. The relational model takes data and
separates it into many interrelated tables that contain
rows and columns. Tables reference each other
through foreign keys that are stored in columns as
well . When querying data, the requested information
will be collected from many tables, as if the user
asks: what is the answer to my question? Non-
relational data models often starts from the
application-specific queries as opposed to relational
modeling. Data modeling will be driven by
application-specific access patterns. An advanced
Understanding of data structures and algorithms is
required, so that the main design would be to know:
what questions fits to my data? Fundamental results
on distributed systems like the CAP theorem apply
well to non-relational systems. As, relational models
were designed to interact with the end user, the non-
relational models depicts evolution in order to reach
the user-oriented nature of the relational model.

There are four main families most used in non-
relational database modeling:
 (1) Key-value store.
(2) BigTable-style database.
(3) Document-oriented model.
(4) Graph data model.
2.1. Key-value store
Each record in a key-value store consists of a pair, a
unique key that can be used to identify the data and a
value. It is the simplest non-relational model. In a
large-scale NoSQL database, key/value storage is
likely to be partitioned across distributed servers.
To help ensure that the data is spread evenly across
partitions, many key-value stores hash the key value
to determine the storage location. A key-value store
focusses on the ability to store and retrieve data
rather than the structure of that data. Some key-value
stores are optimized to support queries that fetch
contiguous sets of data items rather than individual
values. These key-value stores frequently store data
in a partition in key order rather than computing a
location by hashing the key. Ordered key-value

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 156
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

model significantly improves aggregation
capabilities.
2.2. BigTable style database
BigTable is a bit like a single-table database. It is a
kind of dataset that can grow to immense size (many
petabytes) with storage distributed across a large
number of servers. Unlike traditional RDBMS
implementation where each row is stored contiguous
on disk, BigTable model values as map-of-maps-of-
maps, namely, column families, columns, and time-
stamped versions. Column oriented layout is also
very effective to store very sparse data as well as
multi-value cell. Column keys in BigTable get
grouped together as column families. Usually data
within a column family share the same data type.
Google uses column families in their implementation
of BigTable to store all the anchors that refer to a
web page. This design makes reads and writes more
efficient in a distributed environment. Because of the
distributed nature of a BigTable

 Fig:. Column-oriented layout.
database, performing a join between two tables
would be terribly inefficient. Instead, the programmer
has to implement such logic in his application, or
design his application so as to not need it. BigTable
comprises a client library (linked with the user's
code), a master server that coordinates activity, and
many tablet servers, that can be changed
dynamically.
2.3. Document-oriented model
A document-oriented database is a designed for
storing, retrieving, and managing document-oriented,
or semi structured data. It extends the key-value
model, so that values are stored in a structured format
(a document, hence the name) that the database can
understand. For example, a document could be a blog
post and the comments and the tags stored in a de-
normalized way. Since the data are transparent, the
store can do more work (like indexing fields of the
document). Such database allows fetching an entire
page's data with a single query and is well suited for
content oriented applications. Full Text Search
Engines can be considered a related species in the
sense that they also offer

flexible schema and automatic indexes. The main
difference is that Document database
group indexes by field names, as opposed to Search
Engines that group indexes by field values.
Document-oriented models assume documents
encapsulate and encode data in some standard
formats. Encodings in use include XML, YAML,
JSON and BSON, as well as binary forms like PDF
and Microsoft Office documents (old format).
2.4. Graph data model
Graph data models are schema-less non-relational
databases. Most of current implementations fit to the
ACID properties (atomicity, consistency, isolation,
and durability).

 Fig:Graph DataModel
Graph database is essentially a collection of nodes
and edges. Each node represents an entity (such as a
person or business) and each edge represents a
connection or relationship between two nodes. Every
node in a graph database is defined by a unique
identifier, a set of outgoing edges and/or incoming
edges and a set of properties expressed as key-value
pairs. Each edge is defined by a unique identifier, a
starting-place and/or ending-place node and a set of
properties. Graph databases apply graph theory to the
storage of information about the relationships
between entries. The relationships between people in
social networks, is the most obvious example. The
relationships between items and attributes in
recommendation engines, is another. Relational
databases are unable to store relationship data.
Relationship queries can be complex, slow and
unpredictable. Since graph databases are designed for
this sort of thing, the queries are more reliable. Graph
data models are limited in performance in some
situations:
(1) When crossing all the nodes in the same query,
time responses are very slow. Search queries must be
based on at least one identified entity.
(2) In order to avoid database schema upgrade when
model gets changed, schemaless graph databases
requires a manual update on all database objects.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 157
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Graph databases are well-suited for analyzing
interconnections, which is why therehas been a lot of
interest in using graph databases to mine data from
social media. Graph databases are also related to
Document databases because many implementations
allow one model a value as a map or document.
 3. Data Modeling Techniques
Data modeling techniques and tools capture and
translate complex system designs into easily
understood representations of the data flows and
processes, creating a blueprint for construction and/or
re-engineering. Data modelers often use multiple
models to view the same data and ensure that all
processes, entities, relationships and data flows have
been identified. There are several different
approaches to data modeling.
3.1. Conceptual data modeling
Conceptual Techniques identify the highest-level
relationships between different entities:
(1) De-normalization consists of duplicating the same
data into multiple tables or documents in order to
optimize query processing, which increases total data
volume. De-normalization allows storing data in a
query-friendly structure to simplify query processing.
(2) The best way to affect performance in a large data
store is to provide aggregate records that coexist with
the primary base records. These records have a very
significant effect on speeding queries. Data modeling
using aggregates technique is one of the common
ways in order to guarantee some of the ACID
properties.
(3) As joins are not supported in non-relational
database engines in most of the cases, they are
handled at design time as opposed to RDBMS.
3.2. General data modeling
In general, non-relational database engines have
limited transaction support. A transactional behavior
can be achieved in some cases:
(1) Atomic Aggregates is not a complete
transactional solution, but if the store
provides certain guaranties of atomicity, locks, or
test-and-set instructions then
Atomic Aggregates can be applicable.
(2) Dimensionality reduction allows mapping
multidimensional data to a key-value
model or to other non-multidimensional models. For
example, Geohash is a convenient dimensionality
reduction mechanism for geographic coordinates.
Geohash encoding allows one to store geographical
information using plain data models, like sorted key
values preserving spatial relationships.
(3) Index table technique is most used in BigTable-
style databases. It consists of creating and
maintaining a special table with keys that follow the
access pattern.

In order to avoid performance issues, index table
must be maintained regularly or in batch-mode. A
multi-dimensional index can also be built using the
composite key index technique. Composite keys may
be used not only for indexing, but for different types
of grouping.
 (4) Since sorting makes things more complex,
unordered key-value data model can be partitioned
across multiple servers by hashing the key using the
enumerable keys technique.
3.3. Hierarchical data modeling
Hierarchical database is a data model in which the
data is organized into a tree-likestructure, allowing
representing information using parent/child
relationships: each parent can have many children,
but each child has only one parent. All attributes of a
specific record are listed under an entity type. Each
individual record is represented as a row and each
attribute as a column. For example, the Windows
Registry is a hierarchical database that stores
configuration settings and options on Microsoft
Windows operating systems.

 Fig:Hierarchial DataModeling
This model is recognized as the first database model
created by IBM in the 1960s.
Several implementations exist nowadays:
(1) Tree aggregation is about to model trees or
arbitrary graphs into a single record
or document. Still, search and arbitrary access to the
entries might be problematic.
(2) Adjacency list is a basic technique almost known
by everyone. It allows searching for nodes by
identifiers of their parents or children, then to
traverse a graph by doing one hop per query, which
make it inefficient for getting an entire sub-tree for a
given node, for deep or wide traversals.
(3) Path enumeration consists of storing chain of
ancestors in each node. This technique is considered
as a kind of de-normalization. It is especially helpful
for full text search engines because it allows
converting hierarchical structures into flat
documents.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 158
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Nested sets model also belongs to hierarchical data
modeling techniques. It is about modeling tree-like
structures and is used in RDBMS. This model is
perfectly applicable to key-value stores and
document databases. It consists of storing leafs of the
tree in an array and to map each non-leaf node to a
range of leafs using start and end indexes:
(1) Documents processed by search engines can be
modeled hierarchically. This approach consists of
flattening nested documents by numbered field
names. It causes however scalability issues related to
the query complexity.
(2) Nested documents can also be flattened by
proximity queries that limit the acceptable distance
between words in the document, thing that will solve
the scalability issues.
4. Graph Processing
Batch graph processing technique related to graph
databases can be done using MapReduce routines . in
order to explore the neighborhood of a given node
or relationships between two or a few nodes. This
approach makes key-value stores, document
databases and BigTable-style databases suitable for
processing large graphs.

Fig:GraphProcessing
Adjacency list representation can be used in graph
processing. Graphs are serialized into key-value pairs
using the identifier of the vertex as the key and the
record comprising the vertex’s structure as the value.
In MapReduce process, the shuffle and sort phase can
be exploited to propagate information between
vertices using a form of distributed message passing.
In the reduce phase, all messages that have the same
key arrive together and another computation is
performed. Combiners in MapReduce are responsible
for performing local aggregation which reduces the
amount of data to be shuffled across the cluster. They
are only effective if there are multiple key-value pairs
with the same key computed on the same machine
that can be aggregated.

5. Main activities in distributed systems
Scalability is one of the most important drivers of the
non-relational databases. It
manages distributed system coordination, failover,
resources and other capacities. In order to ensure this
scalability behavior, the most required activities are
data consistency, data placement and system
coordination.
5.1. Data consistency
Consistency issues in distributed systems are induced
by the replication and the spatial separation of
coupled data. Three main types of data consistency
exist, point-intime consistency, transaction
consistency and application consistency. In the
absence of data consistency, there are no guarantees
that any piece of information on the system is
uniform across the cluster. Consistency problems
may arise even in a single-site environment during
recovery situations when backup copies of the
production data are used in place of the original data.
The primary advantage to ensuring data consistency
is maintaining the integrity of the stored information.
Maintaining consistency is one of the primary goals
for all data-based computer programs.
5.2. Data placement
Data placement algorithms manage the mapping
between data items and physical nodes, migration of
data from one node to another and global allocation
of resources in the database. The main system
mechanisms for data placement focused on providing
independent programming abstractions and migration
rules, for moving data and computation between
server locations
5.3. System coordination
Distributed databases require single master node to
coordinate activities across other nodes. If master
node crashes then another node should come up and
do the job (leader election). Apache ZooKeeper
provides a set of reliable primitives, building blocks
that allows solving coordination problems.
6. Current study
The biggest challenge nowadays is to get high quality
processing results with a reduced computing time and
costs. To do so, the processing sequence must be
reviewed on the top, so that we could add one or
more modeling tools. Unfortunately, the existing
processing models do not take in consideration this
requirement and focus on getting high calculation
performances which will increase the computing time
and costs. The needed modeling tools and operators
will help the user/developer to identify the processing
field on the top of the sequence and to send into the
computing module only the data related to the
requested result. processing. The second
improvement would be to override the cloud
providers pricing policy, by being able to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 159
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

decentralize the processing on one or more cloud
engines, in parallel or consecutively, based on the
best available computing costs.
7. Experiments and results
We configured the data capture module of Twitter in
order to import every 30 seconds, all public tweets
related to the keywords ‘Crisis’ and ‘Sadness’. About
35000 (1 GB) of non-relational document-oriented
XML files were captured. Several dimensions (users,
roles, geo data, privacy data, timestamps, retweets…)
are embedded in the files so they create a complex
heterogeneous structure. In order to increase the
processing performance, we implemented two
different modeling tools on the top of the computing
sequence, so that the input data in Hadoop engine
will be modeled and significantly reduced. This task
consists of using the nested documents modeling
technique, which allows converting the hierarchical
XML files to flat text files, containing only the
required data types for the study. The remaining data
columns will be in this case: UserID, CreationDate,
Country, Retweets and PrivacyLevel. We set by then
an aggregation model on the data so that the all files
will be merged based on 1/1000 scale.
In the end, the remaining files were processed in
Apache Hadoop engine in order to calculate the daily
frequency of the keywords. The MapReduce
computing will be done on three different levels,
initial data, result data after nested document
modeling and final result data including the
aggregation model. In the third level, the input files
were about 230 MB (initial data reduced up to 77%).
The use of the modeling tools has improved the
computing performances of more than 85%. It is also
possible to extend this model by adding other
improvement tools which will improve the
computing performances even more.

Fig:Processing Activity

8. BigData workbench
The previous experiment shows the impact of the
modeling tools on non-relational data processing. In
order to implement a new abstraction based on model
driven architecture, we thought about creating new
automatic programming software allowing the

users/developers, based on drag & drop features, to
do the following:
(1) Add one or more components from available data
sources (data files, social networks, web services…)
(2) Apply predefined analysis on sample data in order
to dynamically define the structure of the
files/messages.
(3) Apply one or more of non-relational data
modeling tools by connecting the components.
(4) Select a Hadoop processing engine available on a
local or distant network. We believe that such
software solution could help users to reduce data
processing costs by:
(1) Making his own design of the processing chain.
(2) Decentralizing the processing on different
computing engines.
(3) Reducing the volume of data to compute.
9. Conclusion
The data model provides a visual way to manage data
resources and creates fundamental data architecture,
so that we can have more applications to optimize
data reuse and reduce computing costs. Each
technique has strengths and weakness in the way
it addresses each audience. Most are oriented more
toward designers than they are toward the user
community. These techniques produce models that
are very intricate and focus on making sure that all
possible constraints are described. Still, this is often
at the expense of readability. The evaluation must be
based on the technical completeness of each
technique and on its readability in the same time.
Technical completeness is in terms of the
representation of:
(1) Entities and attributes.
(2) Relationships.
(3) Unique identifiers.
(4) Sub-types and super-types.
(5) Constraints between relationships.
A technique’s readability is characterized by its
graphic treatment of relationship lines and entity
boxes, as well as its adherence to the general
principles of good graphic design. The complexity of
a relational database limits the scalability of data
storage, but makes it very easy to query data through
traditional RDBMS. Non-relational database systems
have the opposite characteristics, unlimited
scalability with more limited query capabilities. The
challenge of BigData is querying data easily.
Creating data models on physical data and computing
path help manage raw data. The future will bring
more hybrid systems combining the attributes of both
approaches. Meanwhile, the dynamic model
discussed in this paper offer help in the challenge of
managing Big Data.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 160
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

References
1.Anderson, E. (2009). Efficient tracing and
performance analysis for large distributed
systems. Published in Modeling, Analysis &
Simulation of Computer and Telecommunication
Systems, 2009. MASCOTS '09. IEEE International
Symposium on. Print ISBN 978-1-4244-4927-9.
2.Agarwal, S. (2010). Volley: Automated Data
Placement for Geo-Distributed Cloud Services.
Published in NSDI'10 Proceedings of the 7th
USENIX conference on Networked systems design
and implementation Pages 2-2.
3.Chang, F. (2006). Bigtable: A Distributed Storage
System for Structured Data. Published in OSDI '06
Proceedings of the 7th symposium on Operating
systems design and implementation Pages 205-218.
Print ISBN 1-931971-47-1.
4.Ghemawat, S., Gobioff, H., Leung, S.K. (2003).
The Google File System. Published in SOSP '03
Proceedings of the nineteenth ACM symposium on
Operating systems principles Pages 29-43. Print
ISBN 1-58113-757-5.
5.Kaur, K., Rani, R. (2013). Modeling and querying
data in NoSQL databases. Published in: Big Data,
2013 IEEE International Conference. INSPEC
Accession Number 13999217.
6.Lai, S. (2012). Graph-theory model based E-
commerce website design and realize. Published in
Computing and Networking Technology (ICCNT),
2012 8th International Conference.
7.Li, Y., Manoharan, S. (2013). A performance
comparison of SQL and NoSQL databases. Published
in Communications, Computers and Signal
Processing (PACRIM), 2013 IEEE Pacific Rim
Conference. ISSN 1555-5798.
8.Lin, J., Schatz, M. (2010). Design Patterns for
Efficient Graph Algorithms in MapReduce.
Published in MLG '10 Proceedings of the Eighth
Workshop on Mining and Learning with Graphs
Pages 78-85. Print ISBN 978-1-4503-0214-2.
9.Perera, S., Gunarathne, T. (2013). Hadoop
MapReduce Cookbook. Published by Packt
Publishing. Print ISBN 978-1-84951-728-7.
Tudorica, B.G., Bucur, C. (2011). A comparison
between several NoSQL databases with comments
and notes. Published in Roedunet International
Conference (RoEduNet), 2011 10th. Print ISBN 978-
1-4577-1233-3.

IJSER

http://www.ijser.org/

